Nuclear bile acid receptor FXR protects against intestinal tumorigenesis.
نویسندگان
چکیده
Bile acids have been considered intestinal tumor promoters, and because they are natural ligands for the nuclear receptor FXR, we examined the role of FXR in intestinal tumorigenesis. Using gain- and loss-of-function studies, we found that FXR suppresses intestinal tumorigenesis in vivo. Loss of FXR in the ApcMin/+ and in the chronic colitis mouse models of intestinal tumorigenesis resulted in early mortality and increased tumor progression via promotion of Wnt signaling by infiltrating neutrophils and macrophages and tumor necrosis factor alpha production. Treatment with the bile acid binding resin cholestyramine did not modify the intestinal tumor susceptibility of FXR-/- mice, indicating that loss of FXR and not merely elevated bile acid concentrations increases susceptibility to tumorigenesis. Activation of FXR induced a proapoptotic program in the differentiated normal colonic epithelium as well as transformed colonocytes. Our data suggest that it is unlikely that the tumor-promoting activity of bile acids occurs as a function of their ability to activate FXR. However, FXR activity is relevant to the pathogenesis of intestinal cancer. When FXR is absent in the intestine, there is a promotion of Wnt signaling with expansion of the basal proliferative compartment, and a concomitant reduction in the apical differentiated apoptosis-competent compartment. When FXR is activated in the intestine and in colon cancer cells, there is an induction of apoptosis and removal of genetically altered cells, which may otherwise progress to complete transformation. Thus, from a therapeutic standpoint, strategies aimed at reactivating FXR expression in colon tumors might be useful in treatment of colon cancer.
منابع مشابه
Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development.
Increased dietary fat consumption is associated with colon cancer development. The exact mechanism by which fat induces colon cancer is not clear, however, increased bile acid excretion in response to high-fat diet may promote colon carcinogenesis. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, and bile acids are endogenous ligands of FXR. FXR is highly expresse...
متن کاملCholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis.
Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overe...
متن کاملSrc-Mediated Cross-Talk between Farnesoid X and Epidermal Growth Factor Receptors Inhibits Human Intestinal Cell Proliferation and Tumorigenesis
Besides its essential role in controlling bile acid and lipid metabolism, the farnesoid X receptor (FXR) protects against intestinal tumorigenesis by promoting apoptosis and inhibiting cell proliferation. However, the mechanisms underlying these anti-proliferative actions of FXR remain to be elucidated. In the present study, we examined the effects of FXR activation (FXR overexpression and trea...
متن کاملThe Bile Acid Sensor FXR Protects against Dyslipidemia and Aortic Plaques Development Induced by the HIV Protease Inhibitor Ritonavir in Mice
BACKGROUND Although human immunodeficiency virus (HIV)-related morbidity and mortality rates in patients treated with a combination of high active antiretroviral therapy (HAART) have declined, significant metabolic/vascular adverse effects associated with the long term use of HIV protease inhibitors (PIs) have emerged as a significant side effect. Here we illustrate that targeting the bile acid...
متن کاملBile acid nuclear receptor FXR and digestive system diseases
Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 68 23 شماره
صفحات -
تاریخ انتشار 2008